

Inhaltsverzeichnis

1.	Allgemeine Hinweise	1
1.1.	Vorwort	1
2.	Systembeschreibung	2
2.1.	Systemüberblick	2
2.2.	DI301 DP Varianten	2
2.3.	Lieferumfang	3
2.4.	Funktionsüberblick	3
2.4.1.	Stromversorgungskonzept	3
3.	Montage und Inbetriebnahme	4
3.1.	Umgebungsbedingungen	4
3.2.	Anschlusstechnik	4
3.3.	Spannungsversorgung	4
3.4.	Profibus Installation	4
3.5.	Belegung der Schnittstellen	5
3.5.1.	Klemmenbelegungen/Jumper DI301 DP	5
3.6.	Hardwarekonfigurationen	8 م
3.7.	Skallerung und Parametrierung	9 9
3.7.2.	Einstellungen und Kennwertkalibrierung	9
3.7.2.	1. Handhabung der Bedienoberfläche	.10
3.7.2.2	2. Kennwertkalibrierung Kalibrierung mit Last	ון. 12
3.8	Wägetechnische Parameter	.13 14
3.9	Fingänge und Ausgänge	 16
3.9.1.	Optoeingänge und Inkrementalgebereingang	.16
3.9.2.	Relaisausgänge	.17
3.10.	Fehlerbeseitigung	.19
3.10.1	. Fenieranzeige Defaultsetun-Handling	.19 19
3.10.3	. Verbindungsprobleme	.19
3.11.	Status LED	.19
4.	Funktion der Schnittstellen	.21
4.1.	Beschreibung DI301 DP- Transferprotokoll RS232/RS485	.21
4.1.1.	Host-Kommando	.21
4.1.2.	DI301 DP Antworttelegramm	.21
4.1.3.	Kommandoübersicht der RS232/RS485-Schnittstelle	.21 .22
4.1.5.	Beschreibung Status-Byte	.24
4.1.6.	Beschreibung Error-Bytes	.24
4.1.6.	1. Giodale Fenier	.24 24
4.2	BS232/BS485-Anwenderbeschreibung - DI301 DP	26
4.2.1.	Allgemeines zum verwendeten Protokoll	.26
4.2.2.	DI301 DP Aufruf- und Antworttelegramme	.26
4.3.	Profibus-Anwenderbeschreibung - DI301 DP	.34
4.3.1.	Allaemeines zum verwendeten Protokoll	.34 .34
4.3.3.	DI301 DP-Datenformat	.34
4.3.4.	DI301 DP Profibus Aufruf- und Antworttelegramme	.35
4.3.5.	Erweiterte Diagnosedaten	.39
4.4. 4 4 1	Externe Großsichtanzeige Belegung BS232 M12-Buchse	.40 ⊿∩
4.4.2.	Einstellungen an der Anzeige DA55-NSxx/AxxE	.40
4.4.3.	Einstellungen am DI301 DP	.41

5.	Technische Daten	42
5.1.	Übertragungsgeschwindigkeit	42
6.	Maßbilder	43

1. Allgemeine Hinweise

1.1. Vorwort

Die vorliegende Betriebsanleitung enthält alle wesentlichen Informationen für einen erfolgreichen Einsatz des digitalen Sensorinterfaces DI301 DP.

Es werden in kurz gefasster Form Funktion, Inbetriebnahme/ Konfiguration und Montage beschrieben. Bei Fragen im Zusammenhang mit dem Sensorinterfaces DI301 DP wenden Sie sich bitte an die für Sie zuständigen Vertriebsmitarbeiter.

Die Adressen, Telefon- und Faxnummern befinden sich auf der Vorderseite dieses Handbuches.

2. Systembeschreibung

2.1. Systemüberblick

Das digitale Profibus-Interface DI301 DP wurde für Kraftmessungen und industrielle Verwiegungen mit Messwertausgabe an Feldbussysteme wie den Profibus DP bzw. spezielle RS485-Bussysteme entwickelt. Es erfüllt höchste Ansprüche hinsichtlich Messgenauigkeit, Messgeschwindigkeit und Flexibilität.

Ein Board mit Digitaleingängen und Relaisausgängen ermöglicht einfache Steuerungsfunktionen und inkrementale Wegmessungen, die in Verbindung mit der Kraftmessung zur Auswertung gebracht werden können.

Das DI301 DP beinhaltet alle wichtigen Funktionen, wie Nullstellen, Einschaltnull, Tarieren sowie eine Auflösung des skalierten Messwertes bis zu 100.000 Teilen, die für einen Einsatz als Wägeindikator erforderlich sind.

Ein robustes Aluminium-Druckgussgehäuse mit dem Schutzgrad IP65 ermöglicht den Einsatz außerhalb von Schaltschränken in unmittelbarer Nähe der Kraftaufnehmer auch im Außenbereich.

Durch standardisierte Feldbus- Schnittstellen sind bis zu 125 DI301 DP in einem BUS vernetzbar.

2.2. DI301 DP Varianten

Das DI301 DP ist als ein- oder zweikanaliges Gerät erhältlich. Nachfolgende Tabelle gibt einen Überblick über die lieferbaren Varianten hinsichtlich der Eingangsbelegung. Die Nutzung der digitalen Ein- und Ausgänge ist ausschließlich in der zweikanaligen Version möglich.

Typ- schlüssel	Analogeingang		Schalteingäng e	Inkremental- eingang	Schalt- ausgänge	Spannungs- versorgung 100 240 VAC
	Kanal 1	Kanal 2	4x	1x	2x	optional
DI 301DP.11	mv/v	-	ja	ја	ja	optional
DI 301DP.21	mV/V	mV/V	ja	ja	ja	optional
DI 301DP.22	mV/V	0 ±10V	ja	ја	ja	optional
DI 301DP.23	mV/V	4 20mA	ja	ja	ja	optional
DI 301DP.24	0 ±10V	0 ±10V	ja	ја	ја	optional
DI 301DP.25	€ 4 20mA	€ 4 20mA	ja	ja	ja	optional

Tabelle 1 - DI301 DP Varianten

Die einkanalige Version DI301DP.11 wird mit einer M12-Buchse für die interne RS232-Schnittstelle zur Ansteuerung einer externen Grosssichtanzeige statt einer PG-Verschraubung ausgeliefert (siehe Kapitel 4.4)

2.3. Lieferumfang

DI301 DP im Aluminium- Druckgussgehäuse als Variante entsprechend.

Zubehör

	Typschlüssel	Bezeichnung
Software	XKS 265	Serviceprogramm DI301 DP (Test- und Parametrierprogramm)
Dokumentation Dokumentation auf CD (Handbuch, Anwenderbeschreibung Profibus, GS		Dokumentation auf CD (Handbuch, Anwenderbeschreibung Profibus, GSD- Datei)

Optionen

	Typschlüssel	Bezeichnung
Kabel	XKC 267	Anschlusskabel Profibus (5pol. Kabelstecker B-codiert und SUB-D Stecker 9-pol.) 5m
Kabel	XKC 269	Parametrierkabel RS232C

2.4. Funktionsüberblick

Bild 1 - Prinzipschaltbild

Das DI301 DP besitzt einen 2-kanaligen 24Bit AD-Wandler, einen Mikrocontroller für die interne Messwertverarbeitung und Kommunikation sowie einen speziellen Controller für das Profibusinterface.

Mögliche Eingangssignale des DI301 DP sind DMS-Brückenspannungen sowie Normsignale 0 ... 10 V bzw. 4 ... 20 mA. Das Eingangssignal wird verstärkt, gefiltert, digitalisiert, vom Mikrocontroller weiterverarbeitet und an die Feldbusschnittstelle übergeben. Als Feldbusprotokoll ist neben dem Profibus DP auch ein proprietäres multipoint Protokoll über RS485 verfügbar.

Die Konfiguration und Kalibrierung erfolgt mittels eines Test- und Serviceprogramms XKS265 über eine RS232-Parametrierschnittstelle. Alle Einstellwerte inklusive der Kalibrierdaten können in einer Datei abgelegt und wieder geladen werden.

2.4.1. Stromversorgungskonzept

Die Stromversorgung erfolgt mit einer Gleichspannung von +9V...+36VDC. Eine umfangreiche interne galvanische Trennung der Hauptbaugruppen sichert eine hohe Störfestigkeit.

3. Montage und Inbetriebnahme

3.1. Umgebungsbedingungen

Das DI301 DP erfüllt die Bedingungen für den Schutzgrad IP 65. Detaillierte Umgebungsbedingungen sind im Technischen Datenblatt ersichtlich.

3.2. Anschlusstechnik

Messsignale und Betriebspannung werden über Schraubklemmen angeschlossen. Die Verbindung zum Profibus bzw. Feldbus erfolgt über standardisierte M12 Steckverbinder in B-Kodierung.

Der Anschluss der Drähte ist nur im stromlosen Zustand des Gerätes zulässig.

Beim Anklemmen der Kabeladern sind mechanische Zerstörungen der im Klemmbereich liegenden Bauelemente zu verhindern.

Zum Schutz vor Störsignalen wird die Verwendung von geschirmten Kabeln vorgeschrieben. Die einzelnen Aderenden sollten zur Vermeidung von EMV-Problemen möglichst kurz sein und mit Aderendhülsen versehen werden.

Die Schirme aller zum Gerät führenden Kabel sind mit den Kabelverschraubungen zu kontaktieren. Dazu sind ca. 0,5cm vom äußeren Kabelmantel zu entfernen.

3.3. Spannungsversorgung

Das DI301 DP benötigt eine ungeregelte Gleichspannung zwischen +9...+36 VDC mit einer Restwelligkeit von < 3%.

Die mittlere Leistungsaufnahme beträgt bei 24 VDC ca. 200 mA.

Für die Stromversorgungszufuhr besteht eingangsseitig Verpolungsschutz.

Der DI301 DP ist darüber hinaus als Variante DI301DP.xx-230VAC mit Netzanschluss 230V erhältlich. Für die einzelnen Varianten der Eingänge gilt Tabelle 1. Das Anschlussbild ist aus **Bild 6** ersichtlich.

3.4. Profibus Installation

Für den Anschluss des DI301 DP an den Profibus und die Integration der Baugruppe in die Profibusarchitektur gelten die einschlägigen Richtlinien der PNO.

3.5. Belegung der Schnittstellen

3.5.1. Klemmenbelegungen/Jumper DI301 DP

Bild 3 - Pinbelegung X7 Profibus M12- Buchse

Bild 4 - Pinbelegung X9 int. RS232-Schnittstelle

PIN	Signal	Beschreibung
X1-1	+VDC	+936V DC
X1-2	GND	GND

Tabelle 2 - Belegung X1 Betriebsspannung (siehe Bild 2)

Bild 5 - Schnittstellenkonfiguration über JP3, JP4

Jumper - Bild 5	Verbindung zwischen	Bemerkungen
JP4/4 - JP3/3 Bild 1	serielle Kommunikation über	Kommunikation, Firmware- und
JP4/2 - JP3/1	X9 (RS232)	Parameter Download über RS232
JP4/2 - JP4/1 Bild 2	serielle Kommunikation über	Kommunikation über RS485,
JP3/4 - JP3/3	X7 (RS485)	RS232 (X9) nicht benutzbar!
		ACHTUNG!
		Nicht nutzbar mit Standardvariante
		des DI301 DP.

Tabelle 3 – Erklärungen zu Bild 5

1	2	3	4	5	6	7	8	Adresse
ON	OFF	1						
OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	2
ON	ON	OFF	OFF	OFF	OFF	OFF	OFF	3
							OFF	
OFF	ON	ON	ON	ON	ON	ON	OFF	126
ON	OFF	127						
OFF	ON	Adresse als Setup Parameter						

Tabelle 4 – Einstellung Profibusadresse mit SW2 (Bild 2)

Bedienungsanleitung Anzeigeeinheit DI301 DP

PIN	Signal	Beschreibung
X4-1	SHI	SHIELD/ Schirm
X4-2	+SE	Fühlleitung (+)
X4-3	+EX	Brückenspeisespannung (+) Kanal 1
X4-4	-EX	Brückenspeisespannung (-) Kanal 1
X4-5	-SE	Fühlleitung (-)
X4-6	+SI 1	Messsignal (+) Kanal 1
X4-7	-SI 1	Messsignal (-) Kanal 1
X4-8	TI1	Transducer Identification_Sensorkennung Kanal 1

 Tabelle 5 – Belegung der Klemme X4 Aufnehmeranschluss Kanal 1 – DMS-Eingang (Bild 2)

PIN	Signal	Beschreibung
X4-1	SHI	SHIELD/ Schirm
X4-2	+SE	-
X4-3	+EX	-
X4-4	-EX	-
X4-5	-SE	-
X4-6	+SI 1	+10V – Signal oder 416 mA – Signal
X4-7	-SI 1	+10V – GND oder 416mA – GND
X4-8	TI1	-

Tabelle 6 – Belegung der Klemme X4 Aufnehmeranschluss Kanal 1 – Normsignal-Eingang (Bild 2)

PIN	Signal	Beschreibung
X3-1	SHI	SHIELD/ Schirm
X3-2	+EX	Brückenspeisespannung (+) Kanal 2
X3-3	-EX	Brückenspeisespannung (-) Kanal 2
X3-4	+SI 1	Messsignal (+) Kanal 2
X3-5	-SI 1	Messsignal (-) Kanal 2
X3-6	TI1	Transducer Identification / Sensorkennung Kanal 2

 Tabelle 7 – Belegung der Klemme X3 Aufnehmeranschluss Kanal 2 – DMS-Eingang (Bild 2)

PIN	Signal	Beschreibung
X3-1	SHI	SHIELD/ Schirm
X3-2	+EX	-
X3-3	-EX	-
X3-4	+SI 1	+10V – Signal oder 416 mA – Signal
X3-5	-SI 1	+10V – GND oder 416mA – GND
X3-6	TI1	-

Tabelle 8 – Belegung der Klemme X3 Aufnehmeranschluss Kanal 2 – Normsignal-Eingang (Bild 2)

PIN	Signal	Beschreibung
X10-1	REL 2-M	Relaiskontakt M/ Relais 2
X10-2	REL 2-M	Relaiskontakt S/ Relais 2

Tabelle 9 – Belegung der Klemme X10 (Bild 2)

Bedienungsanleitung Anzeigeeinheit DI301 DP

PIN	Signal	Beschreibung
X11-1	IN 1	Optoeingang 1
X11-2	IN 2	Optoeingang 2
X11-3	IN 3	Optoeingang 3
X11-4	IN 4	Optoeingang 4
X11-5	GND	GND
X11-6	INCA	Inkrementalzählereingang A
X11-7	INCB	Inkrementalzählereingang B (Richtung)
X11-8	REL 1-M	Relaiskontakt M/ Relais 1
X11-9	REL 2-S	Relaiskontakt S/ Relais 1

Tabelle 10 – Belegung der Klemme X11 (Bild 2)

PIN	Signal	Beschreibung
JP1	normal: offen	Download Controller (Basisboard)
JP2	normal: immer geschlossen	Download Controller (Erweiterungsboard)
JP5	Brücke -SE mit –EX	bei 4- Leiterbetrieb für Kanal 1 geschlossen
JP6	Brücke +SE mit +EX	bei 4- Leiterbetrieb für Kanal 1 geschlossen
JP7	Default-Jumper	Wenn geschlossen, dann wird Default-Setup geladen. Kalibrierdaten gehen verloren!

 Tabelle 11 – Belegung Jumper (Bild 2)

Bild 6 - Netzanschlussbild DI301DP.xx-230VAC

3.6. Hardwarekonfigurationen

Die Hardwarekonfiguration beschränkt sich im Wesentlichen auf nachfolgende Einstellungen, sofern die werksseitigen Defaulteinstellungen nicht dem geplanten Einsatzfall entsprechen:

Geräteadresse: Leitungsabschluss: Feldbusprotokoll: SW2 entsprechend **Tabelle 4** SW1 entsprechend **Bild 2** JP3, JP4, entsprechend **Tabelle 3** Grundeinstellung ist Adresse 7 Grundeinstellung "offen" Grundeinstellung: RS232+Profibus DP

3.7. Skalierung und Parametrierung

3.7.1. Werkskalibrierung

Das DI301 DP wird grundsätzlich werksseitig vorkalibriert ausgeliefert. Dies bedeutet, dass das Übertragungsverhalten der Analogsignalverarbeitung entsprechend normiert wird. Dazu werden die, das Übertragungsverhalten der AD-Kanäle bestimmenden Werte Offset und Verstärkung (Offset/Gain) derart eingestellt, dass für den Eingangswert 0 mV/V der digitale Ausgangswert 0 und für den Eingangswert 2mV/V der digitale Dezimal - Ausgangswert 2.000.000 realisiert wird. Diese Korrekturwerte werden in den kanalspezifischen Registern nicht flüchtig gespeichert und sichern somit einen effektiven Austausch im Reparaturfall.

3.7.2. Einstellungen und Kennwertkalibrierung

Öffnen des Menüs: Extras>Schnittstelle

Setup	×
_ Settings	
Port	COM1
Baud rate	9600 💌
Data bits	8
Stop bits	1
Parity	None
Flow control	None
	OK Cancel

Bild 7 - Einstellung der Schnittstellenparameter (Default)

Da das DI301 DP in der Standardversion weder über eine Tastatur noch über ein Display verfügt, sind alle Einstellungen, Anzeigen nur über die Schnittstellen mit einem PC möglich.

Dafür vorgesehen ist eine RS232 Parametrierschnittstelle, für die ein spezielles Kabel als Zubehör zur Verfügung steht.

Über eine Bedienoberfläche (**Bild 8**) sind alle Standardeinstellungen für eine Inbetriebnahme und Kalibrierung ausführbar.

Alle geänderten Kennwerte sind erst aktiv, wenn diese mit dem Button "Setup zum Gerät schreiben" in das DI301 DP übertragen wurden.

!! Die RS485-Variante des DI301 DP kann mittels RS232-RS485-Wandler per serieller Schnittselle (RS232) am PC konfiguriert werden **!!**

Bedienungsanleitung Anzeigeeinheit DI301 DP

Ast Serviceprogramm XKS265		- 🗆 🛛
<u>D</u> atei <u>K</u> alibrieren <u>P</u> arameter <u>E</u> xtras <u>H</u> ilfe		
Mess & Regeltechnik	Setup und Kennwertkalibr Kanal 1	Kanal 2 Aktiv
Nennkennwert	300	300
Masseinheit	Kilogramm 💌	Kilogramm 💌
Anzahl Stellen der Messwertübertragung	4	4
Eingangssignal bei Nennkennwert	2.000	2.000
Eingangssignal	+/- 3 mV/V	+/- 3 mV/V
Interne Abtastrate [1/s] Geräteadresse	15 •	
Gerätedaten		
DI301DP.21 FW-Ver.:V1.0.4 28.02.2007	1: 64.4 kg	т
S/N: K1 2005 HW-Ver.: 1001 Proddatum: 0805 Profibus aktiv	2: 260.5 kg	Т
Netto-Mode		
Gerät – Meßwertübernahme	SUM : 518.2 kg	
COM1 SETUP1 STNGLE	ät lesen Setup in Gerät schreiben	Beenden

Bild 8 - Konfigurationsmaske Einstellungen und Kennwertkalibrierung

3.7.2.1. Handhabung der Bedienoberfläche

Button "Verbinden/Trennen"

Der Button "Verbinden" startet die Kommunikation zum DI301 DP. Es werden Geräteinformationen (Serien-Nr., Firmwareversion und weitere Daten, sowie Profibus aktiv/inaktiv) aus dem Gerät gelesen und angezeigt. Weiterhin wird periodisch der aktuelle Messwert abgefragt und angezeigt, wenn das DI301 DP kalibriert ist. Mit "Trennen" wird die Verbindung zum DI301 DP getrennt.

Button "Setup vom Gerät lesen"

Es wird der gesamte Parametersatz des DI301 DP ausgelesen, die entsprechen Parameter und Anzeigen in die Eingabemaske eingetragen. Der Parametersatz kann nach erfolgreichem Auslesen über "Datei > Speichern" als Datei auf dem PC gesichert werden.

Button "Setup zum Gerät schreiben"

Der gesamte Parametersatz des DI301 DP wir zum Gerät geschrieben und anschließend wirksam. Alle Änderungen in den Eingabefeldern werden wirksam.

Die "alten" Kalibrierdaten werden überschrieben, falls Änderungen in den Eingabefeldern vorgenommen wurden.

Unter "Datei > Öffnen" kann eine gespeicherte Parameterdatei von einem Datenspeicher des PC eingelesen werden und anschließend zum DI301 DP geschrieben werden.

Button " >0<" / "T"

Mit Extras > Button-Funktion kann Tarierung oder Nullung für den Button gewählt werden. Der angezeigte Messwert wird genullt bzw. tariert.

Im 2-Kanal-Betrieb steht darüber hinaus die Aktivierung des Summenkanals zur Verfügung. Aktiviert wird der Summenkanal über "Wägetechnische Parameter - Allgemein > Summenkanal aktiv ". Der Wert für den Summenkanal wird zusätzlich zu den Werten für Kanal1/2 im Hauptfenster angezeigt. Der Summenkanal kann nur bei der Wahl gleicher Maßeinheiten für die Kanäle 1 und 2 aktiviert werden.

3.7.2.2. Kennwertkalibrierung

Die Kennwertkalibrierung (auch theoretische Kalibrierung) skaliert das Gerät mit den Kennwerten des Aufnehmers. Die Kalibrierung wird stets auf Null bezogen. Durch Eingabe der Nennlast des Aufnehmers und des Eingangsspannungsverhältnisses ist damit eine schnelle Kalibrierung des Gerätes möglich. Es wird jedoch nicht die Genauigkeit einer Kalibrierung mit einer bekannten Last erreicht, da Bauelemente-Toleranzen das Ergebnis beeinflussen. Die Eingabe von Teillastbereichen ist nicht vorgesehen. Die Kennwertkalibrierung wird wirksam mit der Funktion (Button): "Setup zum Gerät schreiben".

Eingabefeld "Nennkennwert"

In dieses Feld wird die Nennkraft des Aufnehmers eingetragen. Es werden max. 5 Ziffern akzeptiert.

Eingabefeld "Anzahl Stellen der Messwertübertragung"

In diese Feld wird die Anzahl der Ziffern für die Messwertübertragung eingetragen. Die Anzahl muss ≥ der Anzahl der Ziffern bei Nennkraft sein.

Eingabefeld "Einheit"

Eingabefeld für die verwendete Maßeinheit. Entspricht der Nennkraft des Aufnehmers. Werte: N/ kN/ g/ kg/ t/ lb/ oz

Eingabefeld "Eingangssignal bei Nennkennwert [mV/V]"

Hier wird der Nennkennwert des Aufnehmers bei Nennkraft eingetragen, Werte -3,000...+3,000 mV/V, Werkseinstellung: 2,000 mV/V

Anzeige Eingangsgrösse

Diese Werte werden bei "Setup vom Gerät lesen" vom DI301 DP übernommen. Diese Konfiguration ist als Geräteversion festgelegt und nicht veränderbar.

Eingabefeld "Interne Abtastrate [1/s]"

In diesem Eingabefeld wird die Abtastrate des DI301 DP festgelegt. Mögliche Einstellwerte sind: 1-Kanal-Betrieb: 25/50/100/200/400 Hz, Werkseinstellung: 400 1-Kanal-Betrieb mit Logfunktion: 25/50/100/200/400/800/1600 Hz, Werkseinstellung: 400 2-Kanal-Betrieb: 3/5/8/12/15/20 Hz, Werkseinstellung: 15

Zu beachten ist, ob der ADU im kontinuierlichen Modus (DI301 DP im 1-Kanal-Betrieb) oder im single-Modus (DI301 DP im 2-Kanal-Betrieb) arbeitet.

Im 1-Kanal-Betrieb (kontinuierlicher Modus des ADU) entspricht die eingestellte Abtastrate direkt der Anzahl der zur Verfügung stehenden Messwerte/sec, wobei man Abtastraten >800 nur im internen RAM speichern kann, da diese Datenmengen über die serielle Schnittstelle nicht sofort übertragbar sind.

Im 2-Kanal-Betrieb (Single Modus des ADU) wird die zur Verfügung stehende Abtastrate geringer, da im ADU immer nur eine Wandlung stattfindet und anschließend der Kanal umgeschaltet werden muss.

Höhere Abtastraten stehen im Logspeichermodus zur Verfügung. Dies kann per Menü->Extras->Logfunktion aktiv eingeschaltet werden. Im Logspeichermodus werden die Abtastwerte als 16bit Rohdatenwerte in den internen, 12000 Werte umfassenden Logspeicher geschrieben und können ausgelesen werden.

Abtastrate [1/s] – Normalbetrieb (1-kanalig)	Abtastrate [1/s] – Logbetrieb (1-kanalig)	Abtastrate [1/s] – Normalbetrieb (2-kanalig)
25	25	3
50	50	5
100	100	8
200	200	12
400	400	15
	800	20
	1600	

Tabelle 12 – Zur Verfügung stehende Abtastraten

Eingabefeld "Geräteadresse"

Die Profibus- Adresse wird über den DIL-Schalter SW2 eingestellt. Die hier angezeigte Adresse ist nur zur Information und kann nicht über die Software geändert werden. Werte: 1...125

Anzeige Kanal 1/Kanal 2

Die Spalte 2 ist nicht sichtbar, wenn Kanal 2 inaktiv. Durch eine Markierung bei "Aktiv" wird der 2. Kanal aktiviert.

3.7.3. Kalibrierung mit Last

Mit der Bedienoberfläche "Kalibrierung mit Last" lässt sich eine 2-Punktkalibrierung mit einer bekannten Last oder Kraft im DI301 DP durchführen.

Die 2-Punktkalibrierung ermöglicht die unabhängige Erfassung des Nullpunktes des belasteten Aufnehmers und eines beliebigen Punktes auf der Kennlinie zur Ermittlung der Steilheit.

Kalibrierung Kanal 1	
Null-Last aufbringen	
Null-Last speichern	
Last aufbringen	
Messwert zuordnen	kg
(max. 300)	
Last speichern	
Mehrpunktkalibrierung	
Abbrechen	Beenden

Bild 9 - Konfigurationsmaske Kalibrierung mit Last

Button "Null-Last Speichern"

Mit dieser Funktion wird das zu diesem Zeitpunkt anstehende Eingangsspannungsverhältnis vom Aufnehmer als Null-Last übernommen. Wenn der DI301 DP vorher Kennwertkalibriert wurde. dann kann man diese Funktion als Nullwert-Korrektur verwenden. Es erfolgt eine parallele Kennlinienverschiebung. Die Steilheit der Kennwertkalibrierung bleibt erhalten.

Eingabefeld "Messwert zuordnen"

Die Maßeinheit und der maximale Messbereich (max. xxx) ergeben sich aus den entsprechenden Parametern im DI301 DP. Diese lassen sich mit der Bedienoberfläche "Einstellungen und Kennwertkalibrierung" verändern und so der Messaufgabe anpassen.

Um den Endwert zu kalibrieren, erfolgt zunächst die Eingabe des auf dem Aufnehmer wirkenden, bekannten Gewichtes. Der Wert darf den unter dem Eingabefeld stehenden Wert nicht überschreiten. Um eine ausreichende Kalibriergenauigkeit zu erreichen, sollte der der Wert nicht unter 20% von max. liegen.

Button "Last Speichern"

Mit betätigen dieses Buttons wird im DI301 DP ein Messvorgang gestartet und der eingetragene Messwert dem momentanen Eingangsspannungsverhältnis zugeordnet. Vor Betätigung dieser Funktion muss die dem

eingetragenen Messwert entsprechende Last auf dem Aufnehmer wirken und die geforderte Stillstandsbedingung erfüllen.

Button "Mehrpunktkalibrierung"

Mittels dieses Buttons können Sie bis zu 6 Zusatzpunkte zur Lastkalibrierung mit Angabe der Last kalibrieren.

3.8. Wägetechnische Parameter

AST Wägetechnische Parameter Kanal 1/2				- 🗆 🛛
Allgemeine Parameter Kanal 1 Kanal 2				1
Ausgabe der Gewichtswerte		Summenkanal		
Kontinuierliche Ausgabe der Ge w ichtswerte	Г	Summenkanal aktiv	v	
Anzahl der Werte [1/s]	5	Faktor Kanal 1 Faktor Kanal 2	1255 1255	
Brückenfehlererkennung				
Überprüfungsintervall [ms]	2000 50010000 (0=AUS)	Gesamtwert (Brutto)	600 kg	
Mittelwertfilter		Überlast	110.0 %	
Filter-Typ	Länge 2^N 🔍			
Werte Kanal 1	8 💌	Logspeicher		
Werte Kanal 2	8 🔻	Speicher-Mode		
		Speichern im	Gerät Abbrechen	eenden

Bild 10 – Einstellung wägetechnische Parameter - Allgemein

Ausgabe der Gewichtswerte

Es kann eine kontinuierliche Ausgabe oder eine Ausgabe einer bestimmten Anzahl Warte je Sekunde konfiguriert werden. Die Werte (Kanal, Brutto, Netto, Tara) werden als String auf die serielle Schnittelle ausgegeben.

Brückenfehlererkennung

Es kann das Intervall der Brückenfehlererkennung eingestellt oder die Brückenfehlererkennung deaktiviert werden. Bei zweikanaligem Betrieb halbiert sich die Zeit für die Brückenfehlererkennung je Kanal.

Mittelwertfilter

Es können zwei Varianten für den Mittelwertfilter und die Werte des Mittelwertfilters für die einzelnen Kanäle eingestellt werden.

Summenkanal

Aktivierung/Deaktivierung des Summenkanals. Vorraussetzung für die Aktivierung des Summenkanals ist die Aktivierung des 2. Kanals und Einstellung gleicher Maßeinheiten bei den Setupeinstellungen (siehe **Bild 8**). Beide Kanäle können über einen Faktor eine Skalierung erhalten. Darüber hinaus kann der Grenzwerte für Überlast des Summenkanals eingestellt werden.

Logspeicher

Für den 1-Kanal-Betrieb steht zusätzlich die Einstellung des Logspeichermodus zur Verfügung Es kann der Speichermodus des internen Logspeichers festgelegt werden. Möglich ist der Logspeichermodus bis 12000 16bit-Werte oder der Ringspeichermodus über 12000 16-bit Werte.

Nullstellbereich			Fehler-Grenzwerte	
Unterarenze (<0 - von Nennkennwert)	-100	0125%	Unterlast	-10.0 %
Obergrenze (>0 - von Nennkennwert)	100	0125%	Überlast	110.0 %
			Freie Masseinheit	
			Zeichen 1	m
			Zeichen 2	m
Tarierbereich	-20	0 125%		
Ohtergrenze (>0 - von Nennkennwert)	100	0125%	─Kraftaufnehmer / Brück	enfehlererkennung
Tariermodus	Tarieren ohne	e Stillst 💌	Verstimmungswert Brückenfehlererke	für 400000
Tarawert aus Speicher laden	Γ			

Bild 11 - Einstellung wägetechnische Parameter - Kanal 1/2

Die wägetechnischen Parameter können für jeden Kanal (Kanal 1/2) getrennt vorgenommen werden.

Nullstellbereich

Es können die Grenzen für den Nullstellbereich oberhalb und Unterhalb des Nullwertes eingestellt werden. Angabe erfolgt in Prozent vom Nennkennwert (siehe **Bild 8**).

Tarierbereich

Es können die Grenzen des Tarierbereichs und die Art der Tarierung eingestellt werden. Es kann darüber hinaus festgelegt werden, ob der letzte gespeicherte Tarawert automatisch beim Start des DI301 geladen wird.

Angabe erfolgt in Prozent vom Nennkennwert (siehe Bild 8).

Fehler-Grenzwerte

Es können Grenzwerte für Über- und Unterlast eingestellt werden. Angabe erfolgt in Prozent vom Nennkennwert (siehe **Bild 8**).

Freie Maßeinheit

Für die freie Maßeinheit können zwei freidefinierbare Zeichen eingegeben werden.

Kraftaufnehmer / Brückenfehlererkennung

Mit dem Button "Neu bestimmen" kann der reale Verstimmungswert für die Brückenfehlererkennung des angeschlossenen Kraftaufnehmers bestimmt und abgespeichert werden.

3.9. Eingänge und Ausgänge

Das Erweiterungsbord stellt 4 Optoeingänge, 1 Inkrementalgebereingang mit Drehrichtungserkennung und 2 Relaisausgänge zur Verfügung. Die Anschlussbelegung der einzelnen Klemmen ist in **Kapitel 3.5** beschrieben.

3.9.1. Optoeingänge und Inkrementalgebereingang

Optoeingänge Optoeingänge aktiv	v	Inkrementalgeber		
Negiert Optoeingang 1	Start/Stop Logspeicher	akuv Impulse/Umdrehung Weg/Umdrehung	360	
Optoeingang 2	Kanalauswahl für Nullung/Tarierung			
Optoeingang 3	🔲 Nullung			
Optoenigang +				

Bild 12 - Einstellung Optoeingänge und Inkrementalgebereingang

Die Optoeingänge können aktiviert/deaktiviert werden. Zusätzlich besteht die Möglichkeit eine logische Negation im DI301 DP durchzuführen.

Die Optoeingänge können per XKS265 Standardfunktionen zugewiesen bekommen.

Optoeingang 1 -> Start/Stop Logspeicher Optoeingang 2 -> Kanalauswahl für Nullung/Tarierung Optoeingang 3 -> Nullung Optoeingang 4 -> Tarierung

Der Inkrementalgebereingang kann aktiviert/deaktiviert werden. Zusätzlich besteht die Möglichkeit per Setupparameter die Rohdatenwerte des Zählers mit Werten zu skalieren (Impulse/Umdrehung und Weg/Umdrehung).

3.9.2. Relaisausgänge

Relais 1		Relais 2	
Relais aktiv	V	Relais aktiv	
	 anziehend (aktiv) 		 anziehend (aktiv)
	C abfallend (passiv)		C abfallend (passiv)
Schalten bei	C Fehler C Brückenfehler	Schalten bei	C Fehler C Brückenfehle
	Schaltpunkt C Stillstand		 Schaltpunkt Stillstand
Schaltpunkt-Kanal	Kanal 1	Schaltpunkt-Kanal	Kanal 1 📃
Schaltpunkt-Typ	Brutto	Schaltpunkt-Typ	Brutto
Schaltpunkt [%]	50.0	Schaltpunkt [%]	70.0
Hysterese [%]	1.0	Hysterese [%]	10.0
Hysteresemode	Hyst. AUS 🗨	Hysteresemode	Hyst. AUS
Einschaltzeit	0 505000 ms	Einschaltzeit	0 505000 ms
Einschaltverzögerung	0 505000 ms	Einschaltverzögerung	0 505000 ms

Bild 13 - Einstellung Relaisausgänge

Es besteht grundsätzlich die Möglichkeit die Relais zu aktivieren/deaktivieren und eine logische Negation per Software einzustellen (anziehendes Relais -> abfallendes Relais).

Die Relais 1/2 können für bestimmte Funktionen frei zu den Kanälen eingestellt werden.

Fehler

Bei Auftreten eines beliebigen Fehlers im DI301 DP wird das Relais geschaltet.

Brückenfehler

Bei Auftreten eines Brückenfehlers im DI301 DP wird das Relais geschaltet.

Grenzwert

Die Einstellung zum Schalten bei einem bestimmten Grenzwertes können folgende Parameter eingestellt werden.

Schaltpunkt-Kanal	 -> - Kanal 1 oder 2 getrennt - Kanal 1/Kanal 2 kombiniert, d.h. wenn ein Kanal den Schaltpunkt erreicht wird das Belais geschalten
	- Summenkanal (wenn aktiviert)
Schaltpunkt-Typ	-> Brutto/Netto des jeweiligen Kanals (Kanal 1 oder 2, nur Brutto bei Summenkanal)
Schaltpunkt [%]	-> Schaltpunkt in Prozent
Hysterese [%]	-> Hysteresewert zum Schaltpunkt
Hysteresemode	-> Die Hysterese kann symmetrisch, ober- oder unterhalb des Grenzwertes oder auf aus eingestellt werden.

Stillstand

Bei Stillstand des gewählten Kanals (Kanal 1 oder 2, Kanal 1/2 oder Summenkanal) wird das Relais geschaltet.

Zusätzliche Parameter

Einschaltzeit -> einstellbare Einschaltzeit des Relais (50..5000 ms / 0 = dauerhaft eingeschaltet) Einschaltverzögerung -> einstellbare Einschaltzeitverzögerung (50...5000 ms / 0 = keine Verzögerung)

3.10. Fehlerbeseitigung

3.10.1. Fehleranzeige

Im Hauptfenster des Programms werden ausgewählte Fehler (Überlast, Unterlast, Brückenfehler) direkt angezeigt.

3.10.2. Defaultsetup-Handling

Im Fehlerfall kann durch 2 Methoden das Defaultsetup (Werkseinstellung) geladen werden. Im laufenden Betrieb wird nach stecken des Default-Jumpers (siehe **Bild 2**) ein Defaultsetup geladen und der DI301 DP neu gestartet, die alten Setupeinstellungen und Kalibrierdaten bleiben erhalten.

Nach Trennen des DI301 DP von der Spannungsversorgung, Stecken des Default-Jumpers und Neustart des DI301 DP wird ein Defaultsetup geladen und gleichzeitig ein Defaultsetup in den internen Setup-Speicher geschrieben. Dabei gehen alle Einstellungen und Kalibrierdaten verloren!

3.10.3. Verbindungsprobleme

No.	Ursache	Lösung
1	Kabelverbindung unterbrochen	Kabel prüfen
2	DI301 DP ohne Betriebsspannung	Kabel prüfen
3	COM-Port am PC nicht offen	Software, die den COM-Port belegt, deaktivieren, notfalls Rechner neu starten.
4	Kommunikationseinstellungen nicht korrekt eingestellt	in Software korrekt einstellen, siehe Kap. 3.7.2, COM-Port prüfen (9600 Baud!).
5	Firmware Fehler im DI301 DP	Default-Setup in DI301 DP Variante 1: DI301 DP öffnen Jumper JP2 setzen (siehe Bild 2), Stromversorgung kurz unterbrechen (Reset), Stromversorgung wieder einschalten, warten bis Status- LED rot blinkt, JP2 entfernen und warten bis DI301 DP nach ca. 810 sec. neu startet. Variante 2: Mit Serviceprogramm XKS265 -> Menü->Extras->Default- Setup in Gerät ein Default-Setup in DI301 DP schreiben.
6	USB / RS 232 Umsetzer	Diese Geräte funktionieren u. U. nicht zuverlässig.

Tabelle 13 – Fehlerhilfe

3.11. Status LED

Auf dem Gehäusedeckel befindet sich eine Zweifarb-LED, die folgende Zustände anzeigt.

Anzeige	Zustand
Gelb	Sensor ok, Profibus no link
Grün	Sensor ok, Profibus link ok.
gelb - rot- gelb -rot > intermittierend.	Sensorfehler, Profibus no link
grün blinkend	Sensorfehler, Profibus link ok.

Tabelle 14 – DI301 DP Status LED

<u>Hinweis</u>

Bei Sensorfehler kann es notwendig sein den Wert für die Brückenfehlererkennung/-verstimmung manuell neu zu bestimmen.

Siehe Kapitel 3.8 "Wägetechnische Parameter" - Kraftaufnehmer / Brückenfehlererkennung.

4. Funktion der Schnittstellen

4.1. Beschreibung DI301 DP- Transferprotokoll RS232/RS485

4.1.1. Host-Kommando

Start	ADR	LEN	CMD	RSV	ST	Daten/ Parameter	BCC1	BCC2	Ende
STX	xx	xx	xx	xx	Status bitcod.	ХХ	xx	xx	ETX
STX/ET ADR LEN CMD RSV ST Daten/P BCC1/2	X 'aram.	: Start- u : Maxim : Anzahl : Binärei : Reserv : Binärei : 2 Byte : 16 Bit-(und Ende al 0x7D(der Byte r Befehls /e s Status Fehlerce Checksu	ekennur (125); 0x es CMD scode byte byte ode, Par umme üt	ng des Tel (7E (126) , RSV, ST rameter, M per ADR b	egramms Broadcast -> Anlehnung an PB , Daten/Parameter Messwerte, max. 128 Byte Nutzdat is Daten-Ende (Summe aller Byte	en s und 1er	Kompl.)	

4.1.2. DI301 DP Antworttelegramm

Start	ADR	LEN	CMD	RSV	ST	Daten/ Parameter	BCC1	BCC2	Ende
STX	xx	xx	0x8X	xx	Status bitcod.	ХХ	xx	xx	ETX

Identisch zum Host- Telegramm, aber:

- Bit .7 bei CMD gesetzt spezifiziert Antworttelegramm

4.1.3. DI301 DP Antwort -> Fehlerquittung

Start	ADR	LEN	CMD	RSV	ST	Daten/ Parameter	BCC1	BCC2	Ende
STX	xx	xx	0xFF	0xFF	Status bitcod.	2 Byte Fehlercode bitcodiert	xx	xx	ETX

Identisch zum Host- Telegramm, aber:

- Bit .7 bei CMD gesetzt spezifiziert Antworttelegramm

- nur für Kommunikation als Fehlerquittung

- CMD/RSV sind 0xFF

Eine Fehlerquittung sendet der DI301 DP bei folgenden Bedingungen:

1. Fehlerhafte Checksumme (BCC) bei Übertragung

2. Unbekanntes Kommando (Unterscheidung im Fehlercode)

Code Funktion Name Code Bemerkung Dezimal Hex Kommandos zu Justierfunktionen (Kalibrierung) Nullpunkt-Kalibrierung (ADC-intern) CALNU 01 1 Endpunkt-Kalibrierung (ADC-intern / 2000000 Teile) CALEN 2 02 3 CALNC 03 Externe Kalibrierung Nullpunkt CALEC 4 04 Externe Kalibrierung Endpunkt CALZU 5 Externe Zusatzpunkt-Kalibrierung 05 CALCL Kalibriersatz/Wandlungsrate ändern 6 06 CALTN 7 07 Theoretische Kalibrierung Nullpunkt (mV/V) Intern CALTE 8 08 Theoretische Kalibrierung Endpunkt (mV/V) Intern CALVL 9 Werte für externe Kalibrierung 09 Intern CALZE 10 0A Zusatzpunkte der Kalibrierung löschen Kommandos zu Messtechnischen Funktionen Tarieren (Taraspeicher setzen) RTARA 16 10 SADWU 17 11 ADC-Wert senden gefiltert 1x SCONT 18 12 Messwert kontinuierlich senden ein/aus **SNBTN** 19 13 BTN kontinuierlich senden ein/aus Not in use! RMMON 20 14 Max.- und Min.-Wertmessung ein/aus aktueller normierter Wert in Prozent der Nennlast **SMNRM** 15 21 SMMWE 22 16 Max.- und Min.-Wertmessung (Min/Max-Wert senden) SMWMV 23 17 aktuellen Messwert senden [mV] Umschaltung ADC-Mode ADMOD 24 18 ADOGI 25 19 ADC mit Offset=0 und Gain=1 init. Umschalten Messkanal (cont. mode) **RCHAN** 26 1A **RNULL** 27 1B Waegetechnik-Funktionen -> Nullen RTARS 28 1C Tarieren (Taraspeicher setzen) mit Gewichtswert DIMOD 30 1E Aktuellen ADC-Mode auslesen ADC-Status ermitteln ADCST 1F 31 Intern ADCRG 32 20 Speichern im Logspeicher (ein/aus), Werte holen CALST Anzahl der Stuetzstellen (ext. Kalibr.) im ADC-Kanal0/1 33 21 Kommandos für RTC 24 Uhrzeit / Datum in DI301 schreiben/setzen SDATI 36 RDATI 37 25 Datum und Uhrzeit aus DI301 lesen sonstige Kommandos für Gewichtsstrings DIBNT 40 28 Senden von Brutto/Netto/Tara BBCST Übernahme Messwert für Befehl DIBNT 41 29 Intern Kommandos zum Erweiterungsbord Lesen der Werte für das Erweiterungsbord **EXBVL** 45 2D EXBST 46 2E Schreiben der Werte für das Erweiterungsbord Setup-Kommandos 3C Setup lesen SETRD 60 SETWR 61 3D Setup schreiben Setup valid/invalid setzen Not in use! SETVL 62 3E Setup-Checksumme lesen (aktives Setup) SETCS 63 3F SETTS 64 40 Setup-Test (aktives Setup) Defaultwerte aus Code laden SETDF 65 41 SETEE 42 Laufzeitsetup aus EEPROM (aktives Setup) 66 SETDE 67 Defaultwerte -> EEPROM 43 SETRE 44 Runtimewerte -> EEPROM 68

4.1.4. Kommandoübersicht der RS232/RS485-Schnittstelle

Bedienungsanleitung Anzeigeeinheit DI301 DP

SETCN	69	45	aktives Setup wechseln	
SETER	70	46	komplettes Setup löschen (0xFF)	Intern
STRDE	71	47	Setup aus ext. EEPROM löschen	Intern
DIVER	72	48	diverse DI301-Informationen lesen	
SETBK	73	49	Setup Backup/Restore	
CHNBD	74	4A	temp. Ändern der Baudrate	
Error-Komman	dos			
ERRCD	80	50	Error-Bytes lesen/löschen	
Broadcast-Kon	nmando			
BRCST	100	64	Broadcast-Kommando	
ADC-Kommand	dos			
RADUR	110	6E	ADC-Register schreiben	Intern
SADUR	111	6F	ADC-Register lesen	Intern
ADCIR	112	70	ADC-Interrupt ein/aus	Intern
ADCRS	113	71	ADC-Reset	Intern
Debug- und Te	st-Komand	los		
LZDBG	122	7A	Debug-Kommando (Laufzeitvariablen Waage)	Not in use!
DIWCL	123	7B	divers Werkseinstellungen	Not in use!
DIDIG	124	7C	Diag-Kommandos	Not in use!
DIMSC	125	7D	diverse Kommandos	Intern
DIDBG	126	7E	Debug-Kommandos	Not in use!
DITST	127	7F	Test-Kommandos	Not in use!
Sonstige Komr	mandos			
RREST	51	33	DI301-RESET	

Tabelle 15 - Kommandos der PC-Schnittstelle/CMD

Die oben genannten Befehle stellen den gesamten Befehlssatz des DI301 DP dar. In Kapitel 4.2.2. werden ausgewählte Befehle mit Angabe der Parameter beschrieben. In Kapitel 4.3.4 werden ausgewählte Befehle mit Parametern für die Nutzung im Profibus beschrieben.

4.1.5. Beschreibung Status-Byte

Statusbyte ST - Bedeutung der Bits

<u> </u>		
Bit 1:	00000001	Status -> Error-Bit
Bit 2:	00000010	Reserve
Bit 3:	00000100	Status -> Überlast (Brücke 1 oder 2)
Bit 4:	00001000	Status -> Unterlast (Brücke 1 oder 2)
Bit 5:	00010000	Status -> DMS-Brückenfehler (Brücke 1 oder 2)
Bit 6:	00100000	Reserve
Bit 7:	01000000	Status -> Erweiterungsbord vorhanden
Bit 8:	10000000	Status -> Default-Setup
		•

4.1.6. Beschreibung Error-Bytes

Mit jedem Antworttelegramm sendet das DI301 DP 2 Fehlerbytes (globale Fehler). Für eine genauere Fehlerdiagnose können per Kommando spezielle Fehlerbytes abgerufen werden.

4.1.6.1. Globale Fehler

Byte 1 - Bedeutung der Bits

Bit 1:	00000001	Initialisierungsfehler
Bit 2:	00000010	Setup-Fehler
Bit 3:	00000100	Schnittstellen-Fehler (RS232/485)
Bit 4:	00001000	ADC-Fehler
Bit 5:	00010000	DMS-Brückenfehler
Bit 6:	00100000	Hardwarefehler (allg.)
Bit 7:	01000000	Reserve
Bit 8:	10000000	Profibus-Fehler

Reserve

Byte 2 - Bedeutung der Bits

Bit 1…Bit 8

4.1.6.2. Spezielle Fehler

Byte 1 - Initialisierung	sfehler:		
	Bit 1: 0	0000001	Initialisierungsfehler
	Bit 2…Bi	t 8	Reserve
Byte 2 - Setup-Fehler:	:		
	Bit 1: 0	0000001	Setup FAIL
	Bit 2: 0	0000010	Setup CSUM
	Bit 3: 0	0000100	Setup VALID
	Bit 4: 0	0001000	Setup WRITE
	Bit 5: 0	00010000	Setup READ
	Bit 6: 0	0100000	Setup DEFAULT
	Bit 7: 0	01000000	Setup BLOCK
	Bit 8: 1	0000000	Reserve
Byte 3 - COM-Fehler:			
	Bit 1: 0	0000001	CSUM-Fehler
	Bit 2: 0	0000010	CMD-Fehler
	Bit 3: 0	0000100	TIMEOUT
	Bit 4: 0	0001000	BUF-FAIL
	Bit 5: 0	00010000	SEND-BLOCK -Fehler
	Bit 6… B	lit 8	Reserve
Byte 4 - ADC-Fehler:			
,	Bit 1: 0	0000001	Initialisierungsfehler
	Bit 2: 0	0000010	allg. Fehler
	Bit 3: 0	0000100	Fehler ADC-Messwertpuffer Kanal 1
	Bit 4: 0	0001000	Fehler ADC-Messwertpuffer Kanal 2
	Bit 5… B	iit 8	Reserve

Byte 5 - DMS-Brückenfehler:

Bit 1:	0000001	Unterbrechung Speisung SE, EXC
Bit 2:	0000010	Fehler Brücke 1
Bit 3:	00000100	Fehler Brücke 2
Bit 4:	00001000	Fehler Brücke 1 - Überlast
Bit 5:	00010000	Fehler Brücke 1 - Unterlast
Bit 6:	00100000	Fehler Brücke 2 - Überlast
Bit 7:	0100000	Fehler Brücke 2 - Unterlast
Bit 8:	1000000	Fehler Summenkanal - Überlast
Byte 6 - Hardware-Fehler (allg.):		
Bit 1:	0000001	RAM-Fehler
Bit 2:	0000010	LCD-Fehler
Bit 3:	00000100	RTC-Fehler
Bit 4:	00001000	EEPROM-Fehler
Bit 5:	00010000	Fehler Erweiterungsbord
Bit 7:	0100000	Adress-Fehler (HW-Adr)
Bit 8		Reserve
Byte 7 - Profibus-Fehler :		
, Bit 1:	0000001	Fehler SPC3
Bit 2:	0000010	Fehler PRM
Bit 3:	00000100	Fehler CFG
Bit 4.	Bit 8	Reserve

4.2. RS232/RS485-Anwenderbeschreibung - DI301 DP

4.2.1. Allgemeines zum verwendeten Protokoll

Die Kommunikation des DI301 DP mit einem übergeordneten Gerät (Master) erfolgt über Aufruf- und Antworttelegramme. Durch unterschiedliche Aufruftelegramme kann der Anwender den Datenaustausch über RS232/RS485 in einem gewünschten Datenformat (String, ADC-Messwert als Long-Zahl) beeinflussen. Angesprochen wird der DI301 DP in einem RS485-Bus über seine eingestellte Adresse. Für eine Verbindung über RS232 ist keine spezifische Adresse nötig, es wird mit Adresse 1 gearbeitet.

4.2.2. DI301 DP Aufruf- und Antworttelegramme

Die Bytes in den folgenden Beschreibungen werden als Hex-Zahlen dargestellt! Bei Angabe der Beispiel in der ASCII-Variante werden Hex-Zahlen in <xx> dargestellt. ASCII-Klartext als String.

Die Checksumme (BCC1/2) wird als 16bit-Checksumme von ADR bis Ende Daten/Parameter als Summation der einzelnen Bytes und anschließendem Einerkomplement dieser Summe berechnet und in das Telegramm eingefügt.

Folgend ein Code-Beispiel für C.

```
unsigned short calc_csum(unsigned char *daten, unsigned int len)
```

```
{
```

```
unsigned int i, end_adr;
unsigned long csum = 0;
```

```
// Daten byteweise aufsummieren
for(i = 0; i < len; i++)
csum = csum + (unsigned long)daten[i];</pre>
```

// Einerkomplement der Summe
csum = ~csum;

return (unsigned short)csum;
}

Kommandos zu Justierfunktionen (Kalibrierung)

Wichtiger Hinweis!

Für die Verwendung der Justierfunktionen ist im Zweikanalbetrieb des DI301 DP die Einstellung für den Einkanalbetrieb per Kommando ADMOD mit einer Wandlungsrate von 25 Hz und die dazugehörige Einstellung des gewünschten Kanals per Kommando RCHAN vorzunehmen!

CALNC

Lastkalibrierung Nullpunkt

Aufruf vom Master: CMD-Byte (Kommando): 0x03 / 3 (dez.)

Bsp. (hex): 02 01 03 03 00 00 FF F8 03

Antwort vom Slave:

Antworttelegramm (Bestätigung) nach Wartezeit (ca.6-8s).

Bsp. (hex): 02 01 03 83 00 00 FF 78 03

CALEC

Lastkalibrierung Endpunkt mit Gewichtsangabe

Aufruf vom Master:

0x04 / 4 (dez.)
01
XXX

Gewichtsangabe als String String

Bsp. (hex): 02 01 07 04 00 00 01 34 30 30 FF 5E 03

Bsp. (ASCII): <02><01><07><04><00><01>400<FF><5E><03>

Kalibrierung mit einer Last von 400 (kg).

Antwort vom Slave:

Antworttelegramm (Bestätigung) nach Wartezeit (ca.6-8s).

Bsp. (hex): 02 01 03 84 00 00 FF 77 03

CALZU

Lastkalibrierung Zusatzpunkt

Aufruf vom Master:

CMD-Byte (Kommando):	0x05 / 5 (dez.)	
Parameter-Byte1:	01	Gewichtsangabe als String
Parameter-Byte2-n:	XXX	String

Es können bis zu 6 Zusatzpunkte kalibriert werden, die durch die Firmware des DI301 DP selbstständig einsortiert werden.

Bsp. (hex): 02 01 07 05 00 00 01 32 35 30 FF 5A 03

Bsp. (ASCII): <02><01><07><05><00><01>250<FF><5A><03>

Kalibrierung einer Stützstelle mit einer Last von 250 (kg).

Antwort vom Slave:

Aufruf vom Master:

Antworttelegramm (Bestätigung) nach Wartezeit (ca.6-8s).

Bsp. (hex): 02 01 03 85 00 00 FF 76 03

CALST Anzahl der kalibrierten Stützstellen anfragen

CMD-Byte (Kommando):	0x21 / 33 (dez.)	
Parameter-Byte1:	01	Messkanal 1
-	02	Messkanal 2

Es können insgesamt 8 Stützstellen kalibriert werden. Darin enthalten sind der Nullpunkt und der Endpunkt, d.h. es können 6 zusätzliche Stützstellen kalibriert werden.

Bsp. (hex): 02 01 04 21 00 00 01 FF D8 03

Antwort vom Slave:

Antworttelegramm enthält ein Byte (Anzahl der kalibrierten Zusatzpunkte).

Bsp. (hex): 02 01 04 A1 00 00 03 FF 56 03

Die Kalibrierung umfasst 3 Stützstellen (Nullpunkt, Endpunkt und 1 zusätzlicher Stützwert).

Kommandos zu Mode- und Messkanaleinstellung des DI301 DP

ADMOD

Einstellung Mode des DI301 DP

Der DI301 DP kann nur mit dem Messkanal1 im Einkanalbetrieb betrieben werden!

Aufruf vom Master:

CMD-Byte (Kommando):	0x18 / 24 (dez.)	
Parameter-Byte1:	00	Einkanalbetrieb
	01	Zweikanalbetrieb
Parameter-Byte2:		Interne Abtastrate [1/s]
		Einkanalbetrieb / Zweikanalbetrieb
	00	25 / 3
	01	50 / 5
	02	100 / 8
	03	200 / 12
	04	400 / 15
	05	800 / 20
	06	1600 / 20

Bsp.1 (hex): 02 01 05 18 00 00 00 04 FF DD 03

Einschalten Einkanalbetrieb mit Abtastrate 400 1/s.

Bsp.2 (hex): 02 01 05 18 00 00 01 04 FF DC 03

Einschalten Zweikanalbetrieb mit interner Abtastrate von 15 1/s.

Antwort vom Slave:

Antworttelegramm (Bestätigung).

Bsp.1 (hex): 02 01 03 98 00 00 FF 63 03

Bsp.2 (hex): 02 01 03 98 00 00 FF 63 03

RCHAN

Einstellung Messkanal des DI301 DP

Aufruf vom Master:		
CMD-Byte (Kommando):	0x1A / 26 (dez.)	
Parameter-Byte1:	01	Messkanal 1
	02	Messkanal 2

Bsp. (hex): 02 01 04 1A 00 00 01 FF DF 03

Einschalten Messkanal 1.

Antwort vom Slave: Antworttelegramm (Bestätigung).

Bsp. (hex): 02 01 03 9A 00 00 FF 61 03

Kommandos zu Messtechnischen Funktionen

al 1/2)
anal (s.o.)

Hinweis:

Für die Abfrage der Werte des Summenkanals muss bei einem 2-kanaligen DI301DP der Summenkanal aktiviert worden sein (siehe **Kap. 3.8** – Wägetechnische Parameter).

Bsp. (hex): 02 01 05 28 00 00 00 01 FF D0 03

Abfrage von Brutto/Netto/Tara für Messkanal 1.

Antwort vom Slave:		
Antwort-Byte1:	Cx	Kanalbezeichner (x=1/2/S)
Antwort-Byte2:	:	Trennzeichen
Antwort-Byte3-n:	XXX	Gewichtsstring mit Maßeinheit (incl. Trenner)

Bsp (hex): 02 01 23 A8 00 00 3E 43 31 3A 42 32 39 30 2E 35 20 6B 67 3A 4E 32 39 30 2E 35 20 6B 67 3A 54 30 2E 30 20 6B 67 3C F7 5D 03

Bsp. (ASCII): <02><01><23><A8><00><00>C1:B290.0 kg:N290.0 kg:T0.0 kg<<F7><5D><03>

Die Antwort des Slave beinhaltet die Kennung und Angabe des Messkanal 1 (C1) und die Kennungen und Angaben für Brutto (B290.0 kg), Netto (N290.0 kg) und Tara (T0.0 kg). Der Antwortstring wird mit > und < begrenzt und die einzelnen Werte werden mit einem Doppelpunkt : getrennt.

RTARA

Wägetechnik-Funktion - Tarieren (Taraspeicher setzen)

Aufruf vom Master:

CMD-Byte (Kommando):	0x10 / 16 (dez.)	
Parameter-Byte1:	01	Messkanal 1
	02	Messkanal 2
Parameter-Byte2:	00	kein Speichern des Tarawerts
-	01	Speichern des Tarawerts

Bsp. (hex): 02 01 05 10 00 00 01 FF E8 03

Antwort vom Slave:

Antworttelegramm (Bestätigung).

Bsp. (hex): 02 01 03 90 00 00 FF 6B 03

RTARS

Aufruit vom Mostori

Wägetechnik-Funktion - Tarieren mit Gewichtsangabe

Messkanal 1 Messkanal 2

0x1C / 28 (dez.)	
01	Messkanal 1
02	Messkanal 2
01	Gewichtsangabe als String
XXX	Tariergewicht als String ohne Maßeinheit
	0x1C / 28 (dez.) 01 02 01 xxx

Bsp. (hex): 02 01 09 1C 00 00 01 32 35 30 2E 30 FE E3 03

Bsp. (ASCII): <02><01><09><1C><00><01>250.0<FE><E3><03>

Tarieren mit Angabe von 250.0 kg (bei Endgewicht 300.0 kg).

Antwort vom Slave:

Antworttelegramm (Bestätigung).

Bsp. (hex): 02 01 03 9C 00 00 FF 5F 03

Wägetechnik-Funktion - Nullen

Autrul von master.	Aufruf	vom	Master:
--------------------	--------	-----	---------

RNULL

CMD-Byte (Kommando):	0x1B / 27 (dez.)
Parameter-Byte1:	01
-	02

Bsp. (hex): 02 01 04 1B 00 00 01 FF DE 03

Antwort vom Slave:

Antworttelegramm (Bestätigung).

Bsp. (hex): 02 01 03 9B 00 00 FF 60 03

gefilterten ADC-Wert abfragen (Mittelwert		
-		
0x11 / 17 (dez.)		
01	Messkanal 1	
02	Messkanal 2	
00		
00		
	gefilterten ADC-We 0x11 / 17 (dez.) 01 02 00 00	

Bsp. (hex): 02 01 06 11 00 00 01 00 00 FF E6 03

Antwort vom Slave:

Antworttelegramm enthält den aktuellen gefilterten ADC-Wert (long-Wert). Es werden die 4 Byte des long-Wertes übertragen, z.B. entspricht ein Eingangswert von 2 mV/V einem Wert von 2.000.000 (2 Mio.).

Bsp. (hex): 02 01 08 91 00 00 01 00 1E 78 2A FE A4 03

SMNRM

normierten Wert abfragen

Die Antwort enthält den normierten Wert des Messkanals bezüglich der Skalierung in Prozent.

0x15 / 21 (dez.)	
01	Messkanal 1
02	Messkanal 2
	0x15 / 21 (dez.) 01 02

Bsp. (hex): 02 01 04 15 00 00 01 FF E4 03

Antwort vom Slave:

Antworttelegramm enthält den aktuellen normierten Wert des Messkanals als Float-Zahl, d.h. es werden die 4 Byte des Float-Wertes übertragen.

Bsp. (hex): 02 01 07 95 00 00 BB AE F5 06 FC FE 03

SMWMV	aktuellen Messwert in mV/V abfragen	
Aufruf vom Master:		
CMD-Byte:	0x17 / 23 (dez.)	
Parameter-Byte1:	01	Messkanal 1
-	02	Messkanal 2
Parameter-Byte2:	01	

Bsp. (hex): 02 01 05 17 00 00 01 01 FF E0 03

Antwort vom Slave:

Antworttelegramm enthält den aktuellen normierten Wert des Messkanals als Float-Zahl, d.h. es werden die 4 Byte des Float-Wertes übertragen.

Bsp. (hex): 02 01 0C 97 00 00 31 31 2E 39 39 36 35 30 36 FD 88 03

SCONT kontinuierliches Senden der ADC/Gewichtswerte (aktueller Messkanal)

Das Einschalten des kontinuierliches Senden der Gewichtswerte kann auch per Setup/Parameter erfolgen. Damit wird ein kontinuierliches Senden der Werte nach dem Gerätestart erreicht.

Aufruf vom Master:

CMD-Byte:	0x12 / 18 (dez)
Parameter-Byte1:	00	Stop
-	01	Start
Parameter-Byte2:	00	ADC-Werte
-	01	Gewichtswerte

Bsp.1 (hex): 02 01 05 12 00 00 01 01 FF E5 03

Einschalten kontinuierliches Senden der Gewichtswerte.

Bsp.2 (hex): 02 01 05 12 00 00 00 01 FF E6 03

Ausschalten kontinuierliches Senden der Gewichtswerte. Es erfolgt keine Antwort des Gerätes!

Bsp.3 (hex): 02 01 05 12 00 00 01 00 FF E6 03

Einschalten kont. Ausgabe der ADC-Werte.

Bsp.4 (hex): 02 01 05 12 00 00 00 00 FF E7 03

Ausschalten kont. Ausgabe der ADC-Werte.

Hinweis: Bei Start der kont. Ausgabe der ADC-Werte werden die ADC-Rohwerte direkt und ohne Normierung/Skalierung auf die Schnittstelle gegeben. Es werden die 4 Byte des ADC-Wertes (long-Wert) übertragen, z.B. entspricht ein Eingangswert von 2 mV/V einem Wert von 2.000.000 (2 Mio.). Dies ist nur mit dem 1. ADC-Kanal möglich und erfordert die Deaktivierung des 2. Kanals!

Antwort vom Slave:

Antworttelegramm (Bestätigung). Start des kont. Sendens der Messwerte. Die Werte werden ohne Protokolloverhead direkt in der Form von Befehl DIBNT (s.o.) gesendet.

Bsp.1 (hex): 3E 43 31 3A 42 31 38 32 2E 38 20 6B 67 3A 4E 31 38 32 3E 38 20 6B 67 3A 54 30 2E 30 20 6B 673C

Bsp.1 (ASCII): >C1:B182.8 kg:N182.8 kg:T0.0 kg<

Hinweis: Die ADC-Werte werden in einem Frame der Form *<STX><B3><B2><B1><B0><ETX>* übertragen. Für die Übertragung höherer Messraten muss die Defaultbaudrate (19200 (9600) Baud) entsprechend verändert werden.

Zusatzfunktionen

Aufruf vom Mostor

RMMON

Min./Max.-Wertmessung (ADC-Wert) Ein/Aus

Aufrui vom master:		
CMD-Byte:	0x14 / 20 (dez.)	
Parameter-Byte1:	00	Aus
-	01	Ein

Bsp.1 (hex): 02 01 04 14 00 00 01 FF E5 03

Einschalten der Min./Max.-Wertmessung.

Bsp.2 (hex): 02 01 04 14 00 00 00 FF E6 03

Ausschalten der Min./Max.-Wertmessung.

Antwort vom Slave:

Antworttelegramm (Bestätigung).

Bsp.1 (hex): 02 01 03 94 00 00 FF 67 03

Bsp.2 (hex): 02 01 03 94 00 00 FF 67 03

SMMWE

Min./Max.-Wert abfragen

Aufruf vom Master:		
CMD-Byte:	0x16 / 22 (dez.)	
Parameter-Byte1:	01	Messkanal 1
-	02	Messkanal 2
Parameter-Byte2:	00	MinWert
-	01	MaxWert
Parameter-Byte3:	00	ADC-Wert (long-Wert)
-	01	Gewichtswert (String)

Bsp.1 (hex): 02 01 06 16 00 00 01 00 00 FF E1 03

Min.-Wert (ADC-Wert) von Messkanal 1.

Bsp.2 (hex): 02 01 06 16 00 00 01 01 00 FF E0 03

Max.-Wert (ADC-Wert) von Messkanal 1.

Antwort vom Slave:

Antworttelegramm mit ADC-Wert (je nach Parameter 1) in Form eines long-Wertes (4 Byte), z.B. entspricht ein Eingangswert von 2 mV/V einem Wert von 2.000.000 (2 Mio.).

Bsp.1 (hex): 02 01 07 96 00 00 00 0C B1 E9 FD BB 03

Bedienungsanleitung Anzeigeeinheit DI301 DP

Min.-Wert (ADC-Wert) von Messkanal 1 (831977).

Bsp.2 (hex): 02 01 07 96 00 00 00 1E 72 76 FE 5B 03

Max.-Wert (ADC-Wert) von Messkanal 1 (1995382).

Sonstige Kommandos

ERRCD	
-------	--

Error-Byte(s) abfragen/rücksetzen

Aufruf vom Master:		
CMD-Byte (Kommando):	0x50 / 80 (dez.)	
Parameter-Byte1:	01	Lesen
	02	Schreiben (Error-Byte(s) rücksetzen)
Parameter-Byte2:	00	Error-Byte 1 und Error-Byte 2
	01	Error-Byte Init
	02	Error-Byte Setup
	04	Error-Byte Com
	08	Error-Byte ADC
	10	Error-Byte DMS-Brückenfehler
	20	Error-Byte Hardware
	80	Error-Byte Profibus

Bsp.1 (hex): 02 01 05 50 00 00 01 00 FF A8 03

Abfrage der Error-Bytes 1 und 2.

Bsp.2 (hex): 02 01 05 50 00 00 02 00 FF A7 03

Löschen/Rücksetzen der Error-Bytes 1 und 2 – OHNE Antwort des DI301 DP!

Antwort vom Slave:

Antworttelegramm je nach Parameter-Byte(s). Die Bedeutung des Statusbytes und der einzelnen Fehlerbits werden in Kapitel 4.1.5./4.1.6.. beschrieben.

Bsp.1 (hex): 02 01 05 D0 00 09 10 00 FF 10 03

Aus dem Antworttelegramm in Bsp.1 wird ersichtlich, dass im Status-Byte Bit 0 (Error) und Bit 3 (Unterlast) und im Error-Byte 1 das Bit 4 (DMS-Brückenfehler) gesetzt ist.

RREST	Reset DI301	Reset DI301						
Aufruf vom Master:	- / / / .							
CMD-Byte (Kommando):	0x1B / 27 (dez.)							
Parameter-Byte1:	00	Hard-Reset						
	01	Soft-Reset						

Bsp. (hex): 02 01 04 33 00 00 00 FF C7 03

Antwort vom Slave:

Antworttelegramm (Bestätigung) und Reset und Neustart des DI301.

Bsp. (hex): 02 01 03 B3 00 00 FF 48 03

HINWEIS:

Die Befehle für das Setup sind über die Einstellungen des DI301 DP-Serviceprogramm XKS265 gekapselt.

4.3. Profibus-Anwenderbeschreibung - DI301 DP

Der Standard Profibus DP und dessen Normung nach IEC61158 findet in der Industrie eine immer weitere Verbreitung und Anwendung. Aus diesem Grund haben wir unser neues digitales Sensorinterface diesem Feldbus angepasst.

Alternativ zum Profibus DP steht jedoch weiterhin die RS232/RS485 Schnittstelle mit einem A.S.T.spezifischen BUS-Protokoll zur Verfügung (siehe **Kapitel 4.2**).

4.3.1. Profibus-DP Schnittstelle DI301 DP

Übertragungsprotokoll:	Profibus-DPV0 - Slave nach IEC61158						
Übertragungsraten:	9,6KBit/s bis 12MBit/s						
Potentialtrennung:	Schnittstelle galvanisch getrennt mit Optokoppler Isolationsspannung U > 500V						
Abschlusswiderstand:	Über DIL-Schalter Kabeltyp A: (390Ω - 220Ω - 390	(siehe Bild 2))Ω)					
Feldbusanschluss:	M12 Buchse, B-codiert (siehe Bild						
Betriebsarten:	Sync- und Freeze-Mode werde	n nicht unterstützt					
Adressierung:	ADR bis 125 Teilnehmer über I Setup-Parameter einstellba Bild 2)	DIL-Schalter oder r (siehe					
Ident-Nummer:	0x0939 (2361)						
Parametrierungsdaten:	nur über RS232 Parametriersc	hnittstelle					
Diagnoseinformation:	6 Byte Systemdiagnose nach Norm 12 Byte gerätespezifische Diagnose						
Data Exchange Buffer:	4 Byte OUT / 16 Byte IN						
GSD- Datei:	AST_0939.gsd						

4.3.2. Allgemeines zum verwendeten Protokoll

Die Kommunikation des DI301 DP mit einem übergeordneten Gerät (Master) erfolgt über Aufruf- und Antworttelegramme.

Für die Kommunikation über den Profibus DP ist nur eine eingeschränkte Anzahl der sonst verfügbaren Kommandos des DI301 DP anwendbar. Der Master hat mögliche maximale Antwortzeiten des DI301 DP-Slaves zu berücksichtigen. Ein Aufruftelegramm ohne Antwort wird mit ACK (0x06), ein ungültiges Telegramm mit NAK (0x15) quittiert.

Über den Profibus werden nur Betriebskommandos übertragen, die Parametrierung und Skalierung des DI301 DP erfolgt generell über die RS232 Parametrierschnittstelle mit einem speziellen Parametrierkabel.

4.3.3. DI301 DP-Datenformat

Durch unterschiedliche Aufruftelegramme kann der Anwender den Datenaustausch über den Profibus in einem gewünschten Datenformats (String, ADC-Messwert als Long-Zahl) beeinflussen. Entsprechend des gewünschten Datenformates sind unterschiedliche Übertragungseinstellungen erforderlich, die durch die GSD-Datei vorgegeben sind.

Kommandotelegramme zum Slave werden mit 4 Byte, Antworttelegramme vom Slave werden mit einer Länge von 16 Byte übertragen. Bytes ohne Bedeutung sind als unbestimmte Bytes (xx) gekennzeichnet.

Als erstes Byte eines Antworttelegramms wird das Statusbyte (S) übertragen. Die Bedeutung der einzelnen Bits wird in Kapitel 4.1.5. beschrieben.

4.3.4. DI301 DP Profibus Aufruf- und Antworttelegramme

Die Bytes in den folgenden Beschreibungen und Tabellen werden als Hex-Zahlen dargestellt!

DIBNT Senden von Brutto/Netto/Tara

Autrut vom Master:		
Byte 1: Kommando	28	
Byte 2: Parameter P1:	01	Brutto (Kanal 1/2)
-	02	Netto (Kanal 1/2)
	03	Tara (Kanal 1/2)
	15	Brutto (Summenkanal)
	6E	Float-Werte - Brutto/Netto/Tara (Kanal 1/2)
	6F	Float-Wert - Brutto (Summenkanal)
Byte 3: Parameter P2:	01	Messkanal 1
-	02	Messkanal 2
	00	bei Abfrage Summenkanal
		-

Byte 4: 00

.

.

- -

Hinweis:

Für die Abfrage der Werte des Summenkanals muss bei einem 2-kanaligen DI301DP der Summenkanal aktiviert worden sein (siehe **Kap. 3.8** – Wägetechnische Parameter).

Befehl mit einzelnen Gewichtsstrings:

Antwort vom Slave (16 Byte- Profibus):

Byte 1:	S	Statusbyte
Byte 2:	С	Kanalbezeichner (1=Kanal 1 / 2=Kanal 2 / S=Summenkanal)
Byte 3:	:	Trennzeichen (0x3A)
Byte 4:	V1	Vorkammastelle 1
Byte 5:	V2	Vorkammastelle 2
Byte 6:	V3	Vorkammastelle 3
Byte 7:	V4	Vorkammastelle 4
Byte 8:	V5	Vorkammastelle 5
Byte 9:	V6	Vorkammastelle 6
Byte 10:	V7	Vorkammastelle 7
Byte 11:		Dezimalpunkt (0x2E)
Byte 12:	NK1	Nachkommastelle 1
Byte 13:	NK2	Nachkommastelle 2
Byte 14:	ME1	Maßeinheit
Byte 15:	ME2	Maßeinheit
Byte 16:	Toggle-	Byte

Gewichtsstring: String ist rechtsbündig mit 7 Vorkommastellen (V) + 1 Stelle für Dezimalpunkt + 2 Nachkommastellen (NK) + 2 Stellen für Maßeinheit (ME)

Byte-Nr	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aufruf	28	P1	P2	00												
Antwort	S	С	:	V1	V2	V3	V4	V5	V6	V7		NK1	NK2	ME1	ME2	Toggle

Bsp. (hex): <S> 31 3A 30 30 30 30 32 39 39 2E 39 30 6B 67 <01>

Bsp. (ASCII): <S>1:0000299.90kg<01>

Es wird mit einem Gewichtsstring von 299.90 kg für Messkanal 1 geantwortet. Toggle-Byte ist gesetzt.

<u>Hinweis</u>

Die Anzahl der übertragenen Nachkommastellen NK1/2 ist unabhängig von der, mit dem Serviceprogramm XKS265, eingestellten Anzahl der Nachkommastellen. Es werden immer 2 Nachkommastellen übertragen.

Befehle mit Float-Werten – Parameter 0x6E und 0x6F:

Implementiert ab FW-V1.0.12d.

Parameter 6E:

Es werden die vom gewählten Messkanal (Parameter - P2) die (float-) Werte für Brutto/Netto/Tara und zusätzlich die Anzahl der Nachkommastellen sowie die Maßeinheit (Bedeutung des Rückgabebytes s.u.) übertragen.

Antwort vom Slave (16 Byte- Profibus):

S	Statusbyte
FB14	Float-Wert Brutto (Kanal 1/2)
FN14	Float-Wert Netto (Kanal 1/2)
FT14	Float-Wert Tara (Kanal 1/2)
NK	Anzahl Nachkommastellen
ME	Maßeinheit
Toggle-Byte	
	S FB14 FN14 FT14 NK ME Toggle-Byte

Byte-Nr	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aufruf	28	6E	P2	00												
Antwort	S	FB1	FB2	FB3	FB4	FN1	FN2	FN3	FN4	FT1	FT2	FT3	FT4	NK	ME	Toggle

Parameter 6F:

Es wird der (float-) Bruttowert des Summenkanals und zusätzlich die Anzahl der Nachkommastellen sowie die Maßeinheit (Bedeutung des Rückgabebytes s.u.) übertragen.

Antwort vom Slave (16 Byte- Profibus):

Byte 1:	S	Statusbyte
Byte 25:	FS14	Float-Wert Brutto (Summenkanal)
Byte 613:	00	
Byte 14:	NK	Anzahl Nachkommastellen
Byte 15 :	ME	Maßeinheit (von Messkanal 1)
Byte 16 :	Toggle-Byte	

Byte-Nr	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aufruf	28	6F	00	00												
Antwort	S	FS1	FS2	FS3	FS4	00	00	00	00	00	00	00	00	NK	ME	Toggle

Rückgabewerte für Maßeinheit (ME) - Parameter 6E/6F:

00	kg	Kilogramm
01	t	Tonne
02	g	Gramm
03	ĺb	Pfund
04	οz	Unze
05	Ν	Newton
06	kN	Kilonewton
07	XX	freie Maßeinł

7 xx freie Maßeinheit (einstallbar mittels Serviceprogramm XKS265)

Wichtige Hinweise zu Parameter 6F:

Für die korrekte Funktion des Summenkanals ist unbedingt sicherzustellen, dass der Einstellparameter Maßeinheit für beide Messkanäle gleich gewählt wurde. Es findet keine interne Prüfung statt.

<u>Hinweis</u>

Die Anzahl den Nachkommastellen entspricht der, mit dem Serviceprogramm XKS265, eingestellten Anzahl der Nachkommastellen.

RTARA Wägetechnik-Funktion – Tarieren bzw. Taraspeicher setzen

Aufruf vom Master:

Byte 1: Kommando	10	
Byte 2: Parameter P1	01	Messkanal 1
	02	Messkanal 2
Byte 3: Parameter P2	00	kein Speichern des Tarawerts
-	01	Speichern des Tarawerts
_		-

Byte 4:00

Byte-Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aufruf	10	P1	P2	00												
Antwort	S	06	ХХ	ХХ	ХХ	ХХ	XX	ХХ	ΧХ	хх	XX	ХХ	хх	ХХ	хх	ХХ

RNULL Wägetechnik-Funktion - Nullen

Aufruf vom Master:

anal 1
anal 2

Byte 3: 00 Byte 4: 00

Byte-Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aufruf	1B	P1	00	00												
Antwort	S	06	XX	ХХ	XX	ХХ	ХХ	XX	ХХ	XX	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ

EXBVL Lesen der Werte für Digitale Inputs / Inkrementalgeber / Relais

Aufruf vom Master:

 Byte 1: Kommando
 2D

 Byte 2: 00
 Byte 3: 00

 Byte 4: 00
 Byte 4: 00

Byte-Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aufruf	2D	00	00	00												
Antwort	S	INP	INCR	INCR	INCR	INCR	INCS	INCS	INCS	INCS	REL	00	00	00	00	Toggle

In der Rückgabe erfolgen die Zuständer der Digitalen Inputs (Optoeingänge 1...4), die Werte des Inkrementalgebereingangs (Rohwert, skalierter Wert), der Zustand der Relais 1 und 2.

Antwort vom Slave (16 Byte- Profibus):

Byte 1:	S	Statusbyte
Byte 2:	INP	4bit - Digitale Inputs 14
Byte 3:	INCR	Integer-Wert - Inkrementalgeber (Rohwert - Byte 3/MSB)
Byte 4:	INCR	Integer-Wert - Inkrementalgeber (Rohwert - Byte 2)
Byte 5:	INCR	Integer-Wert - Inkrementalgeber (Rohwert - Byte 1)
Byte 6:	INCR	Integer-Wert - Inkrementalgeber (Rohwert - Byte 0/LSB)
Byte 7:	INCS	Float-Wert - Inkrementalgeber (skalierter Wert - Byte 3/MSB)
Byte 8:	INCS	Float-Wert - Inkrementalgeber (skalierter Wert - Byte 2)
Byte 9:	INCS	Float-Wert - Inkrementalgeber (skalierter Wert - Byte 1)
Byte 10:	INCS	Float-Wert - Inkrementalgeber (skalierter Wert - Byte 0/LSB)
Byte 11:	REL	2 bit - Relais 1/2
Byte 1215	00	
Byte 16:	Toggle-Byte	
Dyte 10.	i oggie-byte	

EXBST Rücksetzen der Werte des Inkrementalgebers

Der Wert des Inkrementalgebers wird auf 0 gesetzt, ebenso der skalierte Wert.

Aufruf vom Master:

Byte 1: Kommando 2E Byte 2: 00 Byte 3: 00 Byte 4: 00

Byte-Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aufruf	2E	00	00	00												
Antwort	(S)	(06)	XX	XX	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	XX	XX	XX	ХХ	XX	XX

<u>Hinweis</u>

Es erfolgt keine Antwort vom DI301 DP. Das erfolgreiche Rücksetzen kann mit neu gelesenem Wert des Inkrementalgebers geprüft werden.

Ab Firmware V1.0.12 vom 08.02.2022 sendet der DI301 DP ein ACK zurück.

ERRCD Error-Byte(s) abfragen/rücksetzen

Aufruf vom Master:

Byte 1: Kommando	50	
Byte 2: Parameter P1	01	Lesen
	02	Schreiben/Löschen
Byte 3: Parameter P2	00	Error-Byte 1 und Error-Byte 2
	01	Error-Byte Init.
	02	Error-Byte Setup
	04	Error-Byte Com
	08	Error-Byte ADC
	10	Error-Byte DMS-Brückenfehler
	20	Error-Byte Hardware
	80	Error-Byte Profibus
Byte 4: 00		

Beispiel: Abfrage der Error-Bytes 1 und 2. Bei den Abfragen der Einzelbytes ist Byte 3 im Antworttelegramm unbestimmt (xx).

	·····															
Byte-Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aufruf	50	P1	P2	00												
Antwort	S	E1	E2	Toggle	ХХ	ΧХ	XX	XX	XX	XX	ХХ	XX	XX	XX	XX	XX

Bei Abfrage der Einzelbytes wird Byte3 mit 0x00 zurückgegeben.

Unbekanntes Kommando an Slave

Ein unbekanntes Kommando wird durch den Profibus-Slave mit NAK (0x15) quittiert

Byte-Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aufruf	XX	00	00	00												
Antwort	S	15	XX	XX	XX	ХХ	ХХ	XX	ХХ	XX						

4.3.5. Erweiterte Diagnosedaten

Der DI301 DP stellt 12 Byte erweiterte Diagnosedaten zur Verfügung. Diese haben folgende Bedeutung:

Byte 1 :	Statusbyte
Byte 2,3:	globales Fehlerbyte
Byte 4 bis 10:	spezielle Fehlerbytes
Byte 11,12:	Reserve

Die Beschreibung der Bedeutung der Bitpositionen des Statusbytes und der einzelnen Fehlerbytes erfolgt in den Kapiteln 4.1.5 und 4.1.6.

Hinweis

Eine parallele Nutzung von Profibus und RS232-Schnittstelle kann u.U. zu Performanceproblemen führen. Die RS232-Schnittstelle ist primär bei einem DI301DP zur Konfiguration vorgesehen und sollte nicht parallel zum Profibus genutzt werden.

4.4. Externe Großsichtanzeige

Es besteht die Möglichkeit eine externe Großsichtanzeige DA55-NSxx/AxxE der Firma GS GmbH an den DI301 DP anzuschließen.

Der Anschluss kann wahlweise an der RS232 oder RS485 erfolgen. Bei Anschluss an der RS232 ist zu beachten, dass zur Konfiguration des DI301 DP die externe Großsichtanzeige nicht gleichzeitig genutzt werden kann (Punkt-zu-Punkt-Verbindung). Bei Betrieb an einem RS485-Bus kann der Betrieb der externen Großsichtanzeige parallel zur PC-Konfiguration erfolgen. Dabei müssen der externen Anzeige und dem DI301 DP unterschiedliche RS485-Adressen zugewiesen werden.

!!! Zulässige Leitungslänge eines RS232-Anschlusskabels beträgt aus Gründen zur Vermeidung von Störungen 5m. **!!!**

4.4.1. Belegung RS232 M12-Buchse

PIN	Signal	Beschreibung
1	RxD	RS232 – RxD
2	TxD	RS232 – TxD
3	GND	RS232 - GND

Tabelle 16 - Belegung RS232-Schnittstelle

4.4.2. Einstellungen an der Anzeige DA55-NSxx/AxxE

Die Einstellung der Anzeige DA55-NSxx/AxxE muss wie folgt vorgenommen werden (siehe Datenblatt zur DA55-NSxx/AxxE).

Kennziffer	Display		Beschreibung
0	0	Interface	RS232
	1		RS485
1	9600	Baudrate	9600 Baud
2	1	Datenformat	8N1 (+ keine Parität)
3	2	Telegrammaufbau	STX D1Dn ETX (RS232)
	3		STX Adresse Adresse D1Dn ETX (RS485)
	5		D1Dn CR/LF (RS232/RS485)
4	хх	Geräteadresse	0099 (RS485)
5	00		
6	00		
7	00		
8	XX	Timeout	beliebige Einstellung für Timeout möglich

Tabelle 17 – Einstellung externe Anzeige DA55-NSxx/AxxE

Für die Anzeige eines Gewichts- bzw. Kraftwertes des DI301 DP ist der Anzeigeumfang (Anzahl der Anzeigestellen) der externen Anzeige zu beachten!

4.4.3. Einstellungen am DI301 DP

Die Einstellung am DI301 DP kann über folgende Maske vorgenommen werden.

gemeine Parameter Kanal 1	Externe Anzeige		
=Externe Anzeige DA55-NSxx/A	wxE		
Anzeige aktivieren			
Schnittstelle	RS232		
RS485-Adresse	10 099		
Anzeige Modus	Brutto		
Anzeige-Kanal	Kanal 1		
Blinken bei Fehler			
Übertragungsprotokoll	STX Data ETX 💽		

Bild 14 - Einstellung externe Anzeige

Anzeige aktivieren

Es Aktivierung/Deaktivierung der externen Großsichtanzeige.

Schnittstelle

Es kann RS232 oder RS485 gewählt werden. (Nur bei DI301 DP mit RS485-Schnittstelle.)

RS485-Adresse

Einstellung der RS485-Adresse. (Nur bei DI301 DP mit RS485-Schnittstelle.)

Anzeige-Modus

Es kann Brutto, Netto oder Tara des eingestellten Anzeige-Kanals angezeigt werden.

Anzeige-Kanal

Kanal1, Kanal2 oder der Summenkanal können angezeigt werden.

Blinken bei Fehler

Es besteht die Möglichkeit im Fehlerfall die Anzeige blinkend darzustellen.

Übertragungsprotokoll

In Abhängigkeit von der gewählten Schnittstelle kann hier das Übertragungsprotokoll eingestellt werden (siehe **Tabelle 15**).

5. Technische Daten

Eingang DMS		einkanalig	zweikanalig	
Anschlusstechnik		6-Leitertechnik	Kanal 1: 6-Leitertechnik Kanal 2: 4-Leitertechnik	
Zulässiger Brückenwiderstand	Ω	87	2000	
Eingangssignal (S)	mV/V	-	33	
Speisespannung für DMS Brücke	VDC		±2.5	
Eingang Normsignal				
Normsignal		0 (+4)+20 m	A oder 0 ±10 V	
Ausgang				
- Profibus		Profibus DP V0 bi	s 12Mbit/s, IEC 61158	
 asynchr. Protokoll RS 485 		busfähig, max. 16	Teilnehmer, 9600 Baud	
Messeigenschaften				
Messwertausgaberate extern	Hz	bis 400	bis 15 je Kanal	
Wandlungsrate intern	Hz	max. 1600		
Auflösung intern	Bit		24	
Stromversorgung				
Spannungsbereich	VDC	9 36		
Stromaufnahme bei 24V (ohne Kraftaufnehmer)	mA	ca. 60		
Umgebungsbedingungen				
Arbeitstemperaturbereich	°C	- 20+ 60		
Lagertemperaturbereich	°C	- 2	5+ 85	
Fehler bei S=2mV/V				
Fehler für DMS-Brücke	%S		0,01	
Linearität	%S	0	,0015	
Rauschbegrenzte Messwertauflösung bei 2 mV/V	Bit	14 bis 19 (abhängig von Messrate)		
Eingangsempfindlichkeit für 1 LSB	nV	5		
Nullpunktdrift	nV/K		20	
Angaben zur Konstruktion		Aluminium D	ruckgussgehäuse	
Gewicht	Kg		0,4	
Abmessungen (B x H x T)	mm	125 x 80 x 57		
Schutzart nach EN 60529		I	P 65	
Interne Klemmleisten		0,14	1mm ²	
Parametrierschnittstelle intern		R	S232	

5.1. Übertragungsgeschwindigkeit

Die Übertragungsgeschwindigkeit der Messwerte über die serielle Schnittstelle ist von internen Parametrierungen und von den Interfacebedingungen des DI301 abhängig.

Unter Berücksichtigung von Reaktionszeiten von DI301 DP(max. 50ms) und Host (ca. 25ms) ergeben sich im ungünstigsten Fall zum Beispiel folgende Verhältnisse:

Übertragungsrate Bd	RS232/RS485	RS232/RS485
	Polling- Modus (Abtastwerte [1/s])	Kontinuierlicher Modus (Abtastwerte [1/s])
	(gefilterte Messwerte oder Massein-	ungefilterte AD- Wandlerwerte
	heiten bezogene Gewichtswerte)	
9600	max. 15	400

RS232/RS485	Profibus
Logspeicher [Messwerte/s]	DP- Slave-Zyklus [Messwerte/s]
25/50/100/200/400/800/1600	ca. 15
Messwerte können nicht in Echtzeit übertragen	Bei einer DP- Zykluszeit von 1ms
werden.	Reaktionszeit DI301 DP: 50ms
	Reaktionszeit Host: 25ms

6. Maßbilder

Bild 18- DI301DP.11 - 230VAC